RESPECT•BELIEVE•ACHIEVE

Forrester High School

Helping your child achieve
Level 3 Numeracy

Rounding	
I can round decimals up to three decimal places.	254.125874 Nearest 100: 300 Nearest 10: 250 Nearest whole number: 254 One decimal place: 254.1 Two decimal places: 254.13 Three decimal places: 254.126
I can use rounding to help estimate the answers to calculations.	A bar of chocolate weighs 42 g . There are 48 bars of chocolate in a box. What is the total weight of chocolate in the box? Estimate $=50 \times 40=2000 \mathrm{~g}$ Calculate: $42 \times 48=2016 \mathrm{~g}$

Number and number processes
I can recall my times tables up to the twelve times table and use them to support with division.

x	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

I can add, subtract, multiply and divide decimals.	Subtract 6.9 from 145.97 $\begin{array}{r} 31 \\ 14.5 .97 \\ -\quad 6.90 \\ \hline 13907 \\ \hline \end{array}$ Multiply 50.6 by 100
I can add, subtract, multiply and divide negative numbers.	The temperature outside at 2 pm was $3^{\circ} \mathrm{C}$. During the next 12 hours, it falls by $6^{\circ} \mathrm{C}$. What is the temperature at 2 am ? $3-6=-3^{o c}$
I can identify multiples and factors.	Multiples of a number are all the numbers which it fits into exactly. For example, the multiples of 6 are $6,12,18,24,30$, 36, ... Factors or a number are all the numbers which fit into it exactly. For example, the factors of 12 are $1,2,3,4,6$ and 12.

I can write a given number as a product of its prime factors.	48
	$48=2 \times 2 \times 2 \times 2 \times 3$

Powers and roots	
I can define index, exponent and power.	Index, exponent and power all refer to the number of times a number is multiplied by itself.
l can evaluate whole number powers and express whole numbers as powers.	$2^{3}=2 \times 2 \times 2=8$
	$4^{2}=4 \times 4=16$

Fractions, decimal fractions and percentages

Convert fractions, decimal fractions and percentages to equivalent fractions, decimal fractions or percentages.

$\frac{1}{10}$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$	$\frac{1}{2}$
0.1	0.2	0.3	0.4	0.5
10%	20%	30%	40%	50%

$\frac{3}{5}$	$\frac{7}{10}$	$\frac{4}{5}$	$\frac{9}{10}$	1
0.6	0.7	0.8	0.9	1.0
60%	70%	80%	90%	100%

I can add and subtract whole numbers and fractions, including when changing a denominator.	the original fractions: $\frac{1}{3}+\frac{1}{2}$ with a common denominator: $\frac{2}{6}+\frac{3}{6}$ result: $\frac{5}{6}$
I can convert between whole or mixed numbers, improper fractions and decimal fractions.	
Using my knowledge of fractions, decimal fractions and percentages, I can carry out calculations with and without a calculator.	$\begin{aligned} & \text { Example } \\ & 25 \% \text { of } £ 640 \\ & =\frac{1}{4} \text { of } £ 640 \\ & =£ 640 \div 4 \\ & =£ 160 \end{aligned}$
I can solve problems in which related quantities are increased or decreased proportionally.	```Value Added Tax (VAT) = 20% (from 4 }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ January 2010)``` Example Calculate the total price of a computer which costs £650 excluding VAT 20% of $£ 650$ $\begin{aligned} & =\frac{1}{5} \text { of } 650 \\ & =650 \div 5 \\ & =130 \end{aligned}$ Total price $=650+130=£ 780$

I can express quantities as a ratio and where appropriate, simplify.	If there are 6 teachers and 60 children in a school, find the ratio of teachers to the total amount of teachers and children.
Teachers: Teachers and Children	
$6: 66$	
$1: 11$	

Money	
I can identify the best value when comparing products and justify my choice.	
I can budget effectively.	Income: Money received/earned. Expenditure: Money spent. Surplus: Money left over. Occurs when income is greater than expenditure.
I can demonstrate knowledge of financial terms.	Debit card: draws money directly from your account when you make a purchase. Credit card: borrows pre-approved funds when you make a purchase. Money is paid back with interest. APR: annual percentage rate pa: per annum Interest rate: the percentage charged by a lender when borrowing money.
I can convert between different currencies.	$£ \rightarrow \$$ multiply by the exchange rate. $\$ \rightarrow £$ divide by the exchange rate.

Time	
I can apply knowledge of the relationship between speed, distance and time to find each of the three variables.	$\begin{aligned} & D=S \times T \\ & S=D \div T \\ & T=D \div S \end{aligned}$
I can calculate time durations across hours and days.	Start Time End Time 2:53 pm $4: 28 \mathrm{pm}$

Measurement		
I can identify appropriate units for length, area and volume.	Length: $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ and km. Area: $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$ Volume: $\mathrm{cm}^{3}, \mathrm{ml}, \mathrm{L}$	
I can convert between standard units.		

Patterns and relationships	
I can generate a number sequences from a given rule and vice versa.	Rule: $T=4 n+6$ Number Sequence: $10,14,18,22 \ldots$
	Rule: $T=2 n-1$ Number Sequence: $1,3,5,7,9 \ldots$
I can use algebra to express a sequence.	The cost of hiring a car is $£ 75$ plus a charge of $£ 0.05$ per mile.

Expressions and equations	
I can collect like terms.	$\begin{aligned} & 2 x+y-x+3 y=x+4 y \\ & a^{2}+2 a+4 a^{2}=5 a^{2}+2 a \end{aligned}$
I can solve linear equations.	$\begin{gathered} 2 x+3=12 \\ 2 x=9 \\ x=4.5 \end{gathered}$
I can evaluate a simple formula.	Use the formula $P=2 L+2 B$ to evaluate P when $L=$ 12 and $B=7$. $\begin{array}{ll} P=2 L+2 B & \text { Step 1: write formula } \\ P=2 \times 12+2 \times 7 & \text { Step 2: substitute } \\ P=24+14 & \text { Step 3: start to evaluate } \\ P=38 & \text { Step 4: write answer } \end{array}$

Properties of 2D and 3D objects	
I can use mathematical instruments to accurately draw a variety of 2D shapes.	Accurate use of protractor and ruler.

Angle, symmetry and transformation		
I can name angles.		

I can use bearings.	
I can identify all lines of symmetry in 2D shapes.	

Data and analysis	
I can describe a method of collecting data.	Survey.
I can describe trends in data.	Example The graph below shows Heather's weight over 14 weeks as she follows an exercise programme. The trend of the graph is that her weight is decreasing.
I can determine if data is robust, vague or misleading.	I consider: 1. Validity of the source. 2. Scale used. 3. Sample size. 4. Method of presentation. 5. Appropriateness of how the data was collected.
I can describe bias.	If data collected is described as biased, this means it does not give a fair representation. Examples: - Using leading questions. - Having a small sample size.
I can organize and display data appropriately.	Bar graphs are often used to display data. The horizontal axis should show the categories or class intervals, and the vertical axis the frequency. All graphs should have a title, and each axis must be labelled. Example:

Ideas of chance and uncertainty			
I can use the probability scale of 0 to 1 showing probability as a fraction or decimal fraction.			
I can calculate the probability of an event occurring.	Question: What is the probability of throwing a prime number on a 12 sided dice? Answer: $P($ prime $)=\frac{\text { Number of favourable outcomes }}{\text { Number of posisble outcomes }}$ $=\frac{5}{12}$		
I can use a given probability to calculate an expected outcome.	Question: The probability of rain in June is 0.2 , so how many days do we expect it to rain? Answer: $30 \times 0.2=6$ days		
I can describe mutually exclusive events.	Events are mutually exclusive if both cannot be true.		

